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The effective acoustic velocity along two highly symmetric directions of the first Brillouin zone is studied in
a two-dimensional squarely arranged solid-solid phononic crystal. The relationship between the effective
elastic velocity and the wave frequency of the two lowest bands is presented, which gives the same results as
those obtained directly from the band structure. Numerical calculations show that the effective acoustic veloc-
ity of the phononic crystal decreases with frequency increasing from zero to the band edge.
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It is well known that the effective medium theory of the
composite material is based on the long-wavelength limit. In
this limit the dimension of scatterers goes beyond the reso-
lution of the wave, and the studied system is considered to be
homogenous, so its wave behavior can be described by ef-
fective parameters.

Several methods have been developed to calculate the ef-
fective sound velocity of the periodic composite system such
as bubbly waterf1–3g and rigid cylinders in airf4,5g. As was
pointed out in Ref.f1g, the long-wavelength limit requires
that the wavelength of a propagating wave should be more
longer than the distance of adjacent scatterers, which means
that the resonance resulting from standing waves between
adjacent scatterers can be neglected. But the fact is that most
of the interesting acoustic phenomena, such as the appear-
ance of a band gapf6,7g and the elastic wave bending effect
f8g, occur only if the wavelength is comparable to or even
smaller than the distance between adjacent scatterers. There-
fore, it is significant if the effective medium theory can be
extended to a higher-frequency regime. Some efforts have
been done to study the unusual conductance of photonic
crystalsf9,10g, where an effective refractive index less than
unity and a negative refractive index were defined. The main
idea is that if the wave propagating process is disregarded
and Snell’s law is employed at boundary, then the unusual
behavior of the wave in photonic crystal can be described by
an effective index. Usually, the refractive index of a conven-
tional optical medium can be obtained by the formulan
=ck/v, but a further consideration is needed if this formula
is extended to the photonic crystal because of the nonlinear-
ity of its dispersion relation and the undetermined direction
of its transmitting wave. In Ref.f10g, Notomi clarified the
features of light propagation in photonic crystals and showed
that, despite the existence of diffractive features, the light
propagation in strongly modulated photonic crystal becomes
refraction like in the vicinity of the band gap and the effec-
tive refractive index can be well defined in these frequency
regimes.

The above results on photonic crystals can also be ex-
tended to phononic crystals. But in the latter case the prob-

lem becomes more complicated since there exists more than
one dispersion relationship even in a uniform medium. We
note that a slab of phononic crystal is something like a sur-
face grating. When a plane wave impacts on the surface of
the slab, the transmitting and reflecting wave usually consists
of a series of plane waves with different propagating direc-
tions, which are named the 0th-, ±1st-, ±2nd-,…, and ±nth-
order diffractive waves. But if the transmitting wave includes
only one nonzero componentsthe 0th, for exampled, then it
can be regarded as a traditional refractive wave, and in this
case the effective elastic parameters can be defined.

In the present work, we use a method similar to that used
in Refs. f4,5g to calculate the effective velocity of a two-
dimensional solid-solid phononic crystal slab. We first calcu-
late the transmission spectra accurately by the eigenmode
matching theorysEMMTd f11g. The advantage of the EMMT
is that the energy flux for all orders of the diffractive waves
can be simultaneously obtained, which helps us decide in
which frequency regime the effective parameters can be well
defined. For simplicity, we restrict our calculation to the fre-
quency regime of the two lowest bands, which are under the
frequency of the diffractive limit. The effective acoustic ve-
locities along theGX and GM directions are then obtained
from the transmission spectrum. As a comparison, we also
calculate the effective velocity from the band structure of the
infinite system with the same configuration by using the for-
mula c=v /k. The results from these two methods agree sur-
prisingly with each other, which implies that the effective
acoustic velocity in the phononic slab can be roughly ob-
tained by the band structure of the infinite system.

Now we use the EMMT to study the transmission spec-
trum of the two-dimensional phononic crystal schematically
shown in Fig. 1, which is infinite along thez and x direc-
tions, and haven unit cells along they direction. The elastic
plane wave from the leftmost semi-infinite uniform substrate
impacts normally on the surface of the slab. To use the
EMMT method, each unit cell has to be cut into many slices
along they direction, and each slice is approximately con-
sidered as a periodic layer-stacked system along thex direc-
tion.

In a two-dimensional system, thexy andz modes can be
decoupledf12,13g and only thexy mode in the phononic
crystal can be excited when the incident wave has in-plane
polarization. So we will consider thexy mode only in the
following for simplicity.*Electronic address: phzlhou@scut.edu.cn
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As is shown in Ref.f11g, the wave solution in each slice
and in both of the semi-infinite substrates can be expressed
as
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Here, U=sU1,U2dt and T2=sT21,T22dt are the displacement
and stress vectors, respectively.ejax is a N3N diagonal ma-
trix and ejby is a 2N32N diagonal matrix.u and t2 are the
2N32N eigenvector matrix associated withb, and the sub-
scriptsR andL stand for right and left, respectively.AR and
AL are the 2N31 amplitude vectors corresponding to the
right- and left-forward waves. For the incoming plane wave,
only the 0th Fourier component ofAR takes a nonzero value
and, for the outgoing wave, the amplitudeALsmd=0. For the
solid-solid phononic crystal with small contrast of elastic
parameters, a reliable result in the low-frequency regime can
be obtained by using a smallerN.

The transmissionsreflectiond coefficient of Fourier com-
ponent can be defined as the ratio of the average transmis-
sion sreflectiond energy flux with the average incoming en-
ergy flux along they direction,

Ti = URefsU̇i
outd*T2i
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where sU̇id* denotes the conjugate of theith component of

the vectorU̇ and “Re” takes the real part of a complex value.
The superscriptsout, in, and ref indicate the outgoing, in-
coming, and reflecting waves, respectively. The same as the
definition in the surface gratingf14g, Ti is called the diffrac-
tive ratio of ith order. The energy conservative condition

oiTi +oiRi =1 must be satisfied in the calculation procedure.
If Ti has only one nonzero component, such asT0, T1, or

T−1, the behavior of the wave through the phononic crystal
slab can be considered as a refractive phenomenon, and the
effective elastic parameters can then be defined.

To show how to obtain the effective velocity of the
phononic crystal, we first consider a system formed by a
uniform medium slab with acoustic impedanceZ2 sand-
wiched by two semi-infinite uniform substrates with acoustic
impedanceZ1. The energy transmission coefficient of the
system for the normal incidence can be written asf15g
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wherev is the angular frequency of the incident wave,c is
the acoustic velocity, andL is the thickness of the sand-
wiched slab, respectively.

From Eq.s3d, we see thatT is a periodic function ofv /c
for a givenL, which has the maximum value 1 ifvi satisfies

vi

c
L = np sn = 0, ± 1, . . .d. s4d

The above two equations suggest that if the transmission
spectrum can be calculated through a different way and the
frequenciessvid with T=1 can be selected out, then the
acoustic velocityc corresponding tovi will be obtained by

csvid = viL/np sn = 0, ± 1, . . .d s5d

for a given thicknessL.
The minimum values ofT are determined by the mis-

match ofZ1 and Z2: when Z1/Z2→0 or Z1/Z2→`, T→0.
For a givenZ1/Z2, T takes the minimum value whenvi
satisfies

vi

c
L = sn + 1/2dp sn = 0, ± 1, . . .d. s6d

If a phononic crystal slab can be considered as an effec-
tive uniform medium with effective acoustic impedanceZef f
and effective velocitycef f, then its transmission coefficient
can also be expressed by Eq.s3d with Z2 andc replaced by
Zef f and cef f. We cannot expectZef f and cef f to be indepen-
dent of v, but a simple calculation shows that Eq.s4d can
still be used to determine the corresponding angular frequen-
cies svid for T=1. On the other hand, Eq.s6d becomes in-
valid because of the frequency dependance ofceff andZeff.

From Eq.s5d we see that to obtain the effective velocity
cef f, the integern must be determined beside the angular
frequencyvi. The corresponding phase shifts between the
nearest peaks ofT should bep, so if we can determine one
of these integersn slike a seedd and the trend of phase shift-
ing with v increasing or decreasing, then the rest ofn can be
determined. Because only the two lowest bands are consid-
ered in the present paper, the transmission spectra start from
v=0 and the correspondingn takes zero, so the followingn
should be 1,2,…, whenv increases because of the positive
cef f.

Using the method presented above, we investigate a two-

FIG. 1. Two-dimensional cross sections of the square array of
parallel circular lead rods with radiusr embedded in an epoxy ma-
trix. The system is infinite in thex andz directions. The unit cell is
shown by the dotted line.sad Cross section to calculate the trans-
mission spectrum along theGX direction.a is the lattice constant.
sbd For theGM direction,ag=Î2a is the lattice constant.
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dimensional composite constructed by the lead circular rods
squarely embedded in the epoxy matrix as shown in Fig. 1.
The unit cells are divided into 100 or more slices. Here 21
plane waves are used to expand the wave solution along the
x direction in each slice. For the two lowest bands, only the
zeroth-orderT0 andR0 exist, which means no diffractive ef-
fect occurs.

A typical transmission spectrum for the system withr /a
=0.2 is presented in Fig. 2. The band structure corresponding
to the middle panels is obtained by the plane-wave expansion
method. The thickness of the slabs are 15 unit cellss15ad
along theGX and 10 unit cellss10Î2ad along theGM direc-
tion, respectively. The first feature extracted from the figure
is that the transmission spectra coincide well with the band
structures and the lowestssecond lowestd branch in the band
can only be excited by the transversallyslongitudinallyd po-
larized incoming wave, which means that in the studied fre-
quency regime phononic crystal behaves like the conven-
tional elastic medium. The second feature is that except in
the region aroundva/2pct=0.42 on the left panel of Fig.
2sad, the transmission spectra fluctuate like a periodic func-
tion and the period decreases as the angular frequency in-
creases, which indicates that the effective velocity is depen-

dent on the frequency of propagating wave. The spectrum for
the longitudinally polarized wave alongGM direction shows
an irregular fluctuation as its frequency approaches the band
edgesaroundva/2pct=0.42d. This irregular fluctuation re-
sults from the unmonotonous feature of the corresponding
branch in the band structure, a discussion for which will be
presented in the following.

The effective velocities corresponding to the two lowest
bands along theGX direction are shown in Fig. 3ssolid lined
and the values calculated bycef f=v /k are also presented
scirclesd as a comparison. We can see that the two results
coincide with each other very well except for the system
with r /a=0.49, the difference of which may be caused by the
convergence of the plane-wave method. This remarkable co-
incidence shows that for the studied system the effective ve-
locities of these two branches can be directly calculated from
the band curves, even though it has a large deviation from
the straight line. Figure 3 also shows that both longitudinal
and transversal effective velocities decrease with frequency
increasing and the decrease becomes faster as the corre-
sponding wave vector gets closer to the edge of the first
Brillonin zone sBZd. From the figure we also see that in the
small frequency regime, the curves for the system with low
ssuch asr /a=0.1d or high ssuch asr /a=0.49d filling fraction

FIG. 2. The transmission spectra with filling
fraction f =0.126 sr /a=0.2d. The frequency is
scaled asva/2pct sad for wave propagating
along theGM and sbd for the GX direction. The
left srightd panels correspond to longitudinal
stransversald normally incident wave. The middle
panels are the band structures of the infinite
system.

FIG. 3. Effective velocity of
the two lowest bands along theGX
direction. sad–sed correspond to
the system withr /a=0.1, 0.2, 0.3,
0.4, and 0.49, respectively. The
upperslowerd curve is for the the
longitudinal stransversald wave,
solid and circle curves, respec-
tively, representing the effective
velocities obtained from transmis-
sion spectra and band structures.
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are more flat than the ones for the system with moderate
filling fractions, which is even true for the transversal wave.

The effective velocities corresponding to the two lowest
bands alongGM direction are shown in Fig. 4, which gives a
similar conclusion as that of Fig. 3. Particularly, we would
like to point out that for the longitudinal wave, if the filling
fraction is smaller than a certain value, the method presented
loses its validity in the frequency regime close to the band
edge. Therefore, we only show the effective velocities in
lower-frequency segments in Figs. 4sad–4scd. We note that
the branch of the band in the middle panel of Fig. 2sad does
not increase monotonically when the wave vector increases
along theGM line. A peak appears around the middle ofGM,
which leads to twov /k values for onev fas shown by
circles in Figs. 4sad–4scdg. This means that there exist two
effective velocities when the frequency closes to the peak.
This phenomenon will disappear when the value ofr /a be-
comes largefe.g.,r /a=0.4 and 0.49 shown in Figs. 4sdd and
4sed, respectivelyg. In the case of bivelocity, Eq.s3d and then
Eq. s4d cannot be used anymore to describe the wave behav-
ior of the phononic crystal slab. Systems with bivelocity are

also discussed by Liuet al. f16g, but what they reported is
obviously not the same as presented here. A further discus-
sion for this bivelocity phenomenon would appear else-
where.

Another feature drawn from Figs. 3 and 4 is the aniso-
tropic property of the acoustic velocity of the system studied.
As was pointed out in Ref.f5g, a phononic crystal with
square-lattice structure should have an elastic anisotropic
property. Our results show that the anisotropy of the studied
system depends on the filling fraction and the system with
moderate filling fractionse.g., r /a=0.3d would have the
strongest anisotropic elastic property.

Finally we would like to point out that the effective ve-
locity of the phononic crystal obtained by the method in
Refs. f4,5g should correspond to the flat part of the curves
snearva/2pct=0d shown in Figs. 3 and 4, where the long-
wavelength limit is valid.
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GM direction.
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